
SaucerSwap V2 Whitepaper

Concentrated Liquidity Market Maker on the Hedera Network

Matthew DeLorenzo Vae Vecturne

October 25, 2023

Abstract

SaucerSwap V2 is a decentralized exchange protocol on the Hedera network,
enabling concentrated liquidity provision for increased capital efficiency com-
pared to SaucerSwap V1. Hedera’s architecture separating cryptocurrency
tokens and smart contracts presented unique challenges and opportunities
described herein.

1 Introduction

SaucerSwap V2 is a set of smart contracts that create an automated market
maker (AMM), a protocol that facilitates peer-to-peer market making and
swapping of cryptocurrency tokens on the Hedera network. It is a modified
fork of Uniswap V3 that concentrates liquidity by ”bounding” it within
arbitrary price ranges [1], enabling increased capital efficiency compared to
SaucerSwap V1.

On the Hedera network, cryptocurrency tokens exist independently from
smart contracts on the Hedera Token Service (HTS). [2] Smart contracts are
stored and interacted with via the Hedera Smart Contract Service (HSCS).
[3] The Hedera mainnet launch of Smart Contracts 2.0 enabled ERC-20
and ERC-721 standard token operations on HTS tokens by smart contracts
on HSCS, resulting in a growing decentralized finance (DeFi) ecosystem on
Hedera. [4]

1



2 Modifications to Uniswap V3

The SaucerSwap V2 fork of Uniswap V3 core and periphery repositories were
left largely unchanged to retain composability and familiarity for DeFi de-
velopers. [5] The few modifications made focused on compatibility with the
Hedera ecosystem (HTS and HSCS). Due to the low cost and high through-
put offerings of Hedera, attention was paid to mitigate arbitrary contract
state expansion and contract creation. [6]

2.1 Pool Creation Fees and Mint Fees

The Hedera network plans to charge rent fees on smart contracts [7], payable
in the native token hbar, as a function of the number of key/value pairs
of storage in smart contracts. Smart contract developers may define an
autoRenewAccountId for one or more smart contracts, to be periodically
debited by the network to pay their rent costs. SaucerSwap uses one
autoRenewAccountId (denoted rentPayer) to pay for all smart contracts
in the SaucerSwap ecosystem. SaucerSwap V2 discourages ordinarily inex-
pensive contract creation and contract state expansion by charging fees to
create new liquidity pool contracts and to mint liquidity positions in pool
contracts.

A pool creation fee is defined in terms of US dollars and assessed in
hbar in the createPool function in UniswapV3Factory.sol, using an hbar
exchange rate precompile contract. A storage variable poolCreateFee is
set by the factory owner account to raise or lower the required fee in
units of tinycents (1 cent USD = 1e8 tinycents). The precompile contract
address(0x168) is called to convert msg.value in tinybars to tinycents
at the current fair market value, and must be greater than or equal to
poolCreateFee to create a new pool.

A position mint fee is assessed similarly in the mint function in
UniswapV3Pool.sol. SaucerSwap V2 charges a fee to mint positions be-
cause it expands smart contract state in the pool contract by adding
a storage struct to a mapping with the minted position’s data. Like
the pool creation fee, the position mint fee is a storage variable in
UniswapV3Factory.sol, in units of tinycents. The mint fee is paid to the
pool contract and sent to the rentPayer by the factory owner by calling
collectProtocol.

2



2.2 Non-Fungible Tokens as Liquidity Positions

SaucerSwap V2 uses HTS non-fungible tokens (NFTs) as an option for rep-
resenting liquidity positions. Instead of a liquidity provider keeping track
of a data struct to manage a position in a pool contract, a smart con-
tract, NonfungiblePositionManager.sol, mints the position for the liquid-
ity provider and issues an NFT. The NFT functions as a proof of ownership
of the underlying position and is used to manage the position size, collect
swap fees, etc. This is advantageous because it consolidates position struct
information in a central location and allows liquidity positions to change
owner via a HAPI Crypto Transfer.

The contract NonfungiblePositionManager.sol is set as the NFT’s
supply key and treasury key, which allows it to control the NFT’s minting
and burning on HTS. The NFT’s metadata consists of a SaucerSwap Labs-
owned base URL, appended with the 7 byte hex-encoded serial number of
the NFT. An event is emitted when a new NFT serial number is minted,
prompting the creation of an image file by SaucerSwap Labs. The image file
contains artwork with overlaid position information, hosted at the full URL
of the NFT’s metadata field.

NonfungiblePositionManager.sol only utilizes the NFT serial number
for its positions mapping. In the extreme example of SaucerSwap Labs
losing control over the rights or functionality of the URL, liquidity position
NFTs would still be redeemable by the owner or approved spender of the
NFT.

2.3 Token Association

Hedera discourages token balance mapping expansion by requiring ac-
count and contract entities be associated to tokens before taking custody.
UniswapV3Pool.sol associates both reserve tokens to itself in the construc-
tor. The abstract contract PeripheryImmutableState.sol, inherited by
most periphery contracts, associates wrapped hbar (WHBAR) in its con-
structor. Since these can be handled by the contracts themselves, it prevents
the need for external input to associate tokens.

SwapRouter.sol custodies intermediate tokens for multi-hop routes, and
QuoterV2.sol custodies tokens in simulated swap transactions; both con-
tracts require an external call to associate tokens. These contracts inherit
Ownable.sol [9], allowing owner account to associate tokens to each con-
tract. Token association is the only functional role granted to owner for
SwapRouter.sol and QuoterV2.sol.

3



References

[1] Hayden Adams et al, Uniswap V3 Core White Paper. https://uniswap.
org/whitepaper-v3.pdf

[2] Hedera Hashgraph LLC, Tokenization on Hedera. https://hedera.

com/hh_tokenization-whitepaper_v2_20210101.pdf

[3] Hedera Hashgraph LLC, Hedera Documentation. https://docs.

hedera.com/hedera/

[4] Gehrig Kunz, Smart Contracts 2.0: Live on Mainnet. https://hedera.
com/blog/smart-contracts-2-0-live-on-mainnet

[5] Uniswap Labs GitHub Repository. https://github.com/Uniswap

[6] Leemon Baird and Atul Luykx, The Hashgraph Protocol: Efficient
Asynchronous BFT for High-Throughput Distributed Ledgers. https:
//hedera.com/hh-ieee_coins_paper-200516.pdf

[7] Hedera Hashgraph LLC, Smart Contract Rent on Hedera. https:

//docs.hedera.com/hedera/core-concepts/smart-contracts/

smart-contract-rent

[8] Uniswap Labs, Getting a Quote. https://docs.uniswap.org/sdk/v3/
guides/quoting

[9] OpenZeppelin GitHub Repository. https://github.com/

OpenZeppelin/openzeppelin-contracts/blob/master/contracts/

access/Ownable.sol

DISCLAIMER

This paper is for general information purposes only. It does not constitute
investment advice or a recommendation or solicitation to buy or sell any
investment and should not be used in the evaluation of the merits of making
any investment decision.

4

https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper-v3.pdf
https://hedera.com/hh_tokenization-whitepaper_v2_20210101.pdf?
https://hedera.com/hh_tokenization-whitepaper_v2_20210101.pdf
https://hedera.com/hh_tokenization-whitepaper_v2_20210101.pdf?
https://hedera.com/hh_tokenization-whitepaper_v2_20210101.pdf
https://docs.hedera.com/hedera/
https://docs.hedera.com/hedera/
https://docs.hedera.com/hedera/
https://docs.hedera.com/hedera/
https://hedera.com/blog/smart-contracts-2-0-live-on-mainnet
https://hedera.com/blog/smart-contracts-2-0-live-on-mainnet 
https://hedera.com/blog/smart-contracts-2-0-live-on-mainnet
https://hedera.com/blog/smart-contracts-2-0-live-on-mainnet 
https://github.com/Uniswap
https://github.com/Uniswap
https://hedera.com/hh-ieee_coins_paper-200516.pdf
https://hedera.com/hh-ieee_coins_paper-200516.pdf
https://hedera.com/hh-ieee_coins_paper-200516.pdf
https://hedera.com/hh-ieee_coins_paper-200516.pdf
https://hedera.com/hh-ieee_coins_paper-200516.pdf
https://docs.hedera.com/hedera/core-concepts/smart-contracts/smart-contract-rent
https://docs.hedera.com/hedera/core-concepts/smart-contracts/smart-contract-rent
https://docs.hedera.com/hedera/core-concepts/smart-contracts/smart-contract-rent
https://docs.hedera.com/hedera/core-concepts/smart-contracts/smart-contract-rent
https://docs.hedera.com/hedera/core-concepts/smart-contracts/smart-contract-rent
https://docs.hedera.com/hedera/core-concepts/smart-contracts/smart-contract-rent
https://docs.uniswap.org/sdk/v3/guides/quoting
https://docs.uniswap.org/sdk/v3/guides/quoting
https://docs.uniswap.org/sdk/v3/guides/quoting
https://docs.uniswap.org/sdk/v3/guides/quoting
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol

