
SaucerSwap v1 Core

Matthew DeLorenzo Joseph Bergvinson

July 2022

Abstract
 This technical whitepaper places SaucerSwap in the context of Uniswap v2 core
contracts. Hedera smart contracts were upgraded to allow Hedera native tokens to be traded
using an automated market maker protocol. Several modifications to Uniswap v2 are
covered, including a novel structure of rent payment, use of the factory contract as the burn
address, and ERC20 inheritance for HTS precompiles. Wrapped hbar – an analogue to weth
– is introduced. These modifications demonstrate the re-architecture of Ethereum smart
contracts such that they take full advantage of the high performance and predictable fee
structures of the Hedera network.

1 Introduction

 SaucerSwap is a fork of Uniswap V2, an on-chain system of smart contracts on the Ethere-
um blockchain – that leverages the Hedera Smart Contract Service (HSCS) to include Solidity
smart contract integration with the Hedera Token Service (HTS). These smart contracts
implement an automated market maker (AMM) protocol based on the constant product
formula,

xy = k

 For more information on the Uniswap v2 algorithm, please refer to the Uniswap v2 core
whitepaper. [1]

 On the Ethereum network, the dominant ERC20 and ERC721 standards are used for token
operations like mint, burn, and transfer. In these standards, tokens are contracts and token
operations change contract states. The Hedera ecosystem di�erentiates itself from Ethereum
in that token operations are performed on HTS. HSCS was recently upgraded to allow smart
contracts to use HTS through Ethereum Virtual Machine (EVM) precompiles. [2] After these
upgrades, it became possible to create a decentralized exchange (DEX) using tokens on HTS.

1

While it was possible to create a DEX using the ERC20 standard, the Hedera ecosystem at the
time of writing is more amenable to tokens created by and controlled through HTS, and
represents the novelty of SaucerSwap.
 An important feature of Hedera is the network’s consistent and predictable fee structures
for token operations. For example, a token transfer is pegged to approximately $0.0001,
payable in Hedera’s native token, hbar, on HTS.
 For more information on the Hedera ecosystem, including HSCS and HTS, please visit their
docs. [3]

2 Modifications to UniswapV2

2.1 Establish rent payer for all contracts

 At the time of writing, Hedera plans to charge rent to smart contracts as a function of the
number of key/value pairs in a contract. Various models have been presented, such as
pay-per-use, donation-based, and dynamic fees. [4] SaucerSwap is designed to charge fees in
hbar for expanding contract state. Fees are ultimately transferred from the contract to a desig-
nated rent paying account (rentPayer).
 The fees on SaucerSwap are denominated in U.S. dollars, but are payable in hbar. Saucer-
Swap smart contracts fetch the U.S. dollar to hbar conversion factor using an exchange rate
precompiled contract (at address 0x168). This exchange rate is relevant to fee calculations on
the Hedera network, or in other words, how many hbar are needed to achieve a successful
token operation without reversion. The precompile should not be used as a reliable financial
instrument for determining the hbar/USD exchange rate because it is only designed to calcu-
late fees charged by Hedera.
 SaucerSwap’s UniswapV2Factory contract uses the exchange rate precompile, as this
requires a fixed fee (which can be adjusted by feeToSetter) to create a new liquidity pool and
pair contract. At launch, $1.00 in hbar is sent to the pair contract from msg.value to create the
contract’s LP token. The pair contract’s address is used as the treasury key of the LP token,
meaning that tokens are minted to the pair contract. It is also used as the supply key of the LP
token, which gives the contract sole minting and burning rights over its LP token. This is
immutable and achieves decentralization of the liquidity pool.
 The fixed fee (minus the hbar required to create the LP token) is sent to the rentPayer
account, from which Hedera may draw the funds to pay smart contract rent. Every pair
contract inherits the rent paying account of the factory contract, which is set to rentPayer.
This structure of rent payment ensures the pair contracts will not be delinquent.
 The function declaration of createPair is,

function createPair(address tokenA, address tokenB)

 external payable costsTinycents(pairCreateFee) override returns (ad-

dress pair) {

createPair was made payable to collect the payment required for LP token creation and the

1Hayden Adams, Noah Zinsmeister, Dan Robinson. Uniswap v2 Core. March 2020. https://uniswap.org/whitepaper.pdf
2Hedera Team. Hedera Hashgraph Announces Mainnet Launch of EVM-Compatible Smart Contracts 2.0. February 2022.
https://hedera.com/blog/hedera-hashgraph-announces-mainnet-launch-of-evm-compatible-smart-contracts-2-0

future rent for the new pair contract. The modifier costsTinycents(pairCreateFee) enforc-
es that msg.value is greater than pairCreateFee (in tinycents, where 1 cent = 108 tinycents).

2.2 Burn address for MINIMUM_LIQUIDITY

 On the Hedera network, one cannot send HTS tokens to a burn address to which no one
owns the private keys. Accounts must associate with the tokens they wish to receive. Associa-
tion serves as a protection to limit out of control state expansion using spam tokens, which
poses a threat due to low fees on Hedera.
 Because no burn address exists, SaucerSwap uses the factory contract as the burn address
to hold MINIMUM_LIQUIDITY. Upon creation of the pair contract and its LP token, the factory
associates itself with the newly created LP token and holds MINIMUM_LIQUIDITY.

2.3 ERC20 inheritance for HTS precompiles

 The SaucerSwap pair contracts inherit an abstract contract which calls HTS precompiles to
mint, burn, transfer, and associate HTS tokens, as described in HIP-206. [5] Each precompile
call requires a successful response from HTS, and reverts otherwise.
The pair contract gets its balances of token0 and token1 using the IERC20 implementation
described in HIP-218. [6] The function balanceOf is used because it is important for the pair
contract to know its own balances of token0 and token1 to correctly calculate its own
reserves. The pair contract also uses the HIP-218 implementation of the function totalSupply
in the pair contract’s mint and burn external functions.

3 Wrapped hbar
 Uniswap v2 makes extensive use of wrapped ether (weth) to convert the native token ether
to one that conforms to the ERC20 standard. Likewise, SaucerSwap uses wrapped hbar
(whbar) to convert hbar to one conforming to HTS token standards. The whbar token is creat-
ed using a token create precompile in the constructor of the wrapped hbar contract. Much like
the LP tokens of pair contracts, the wrapped hbar contract controls the minting and burning
of whbar tokens.
 The only functions present in the wrapped hbar contract are deposit and withdraw. Users
may transfer and associate whbar tokens outside of HSCS, or by calling HIP-206 precompiles
in smart contracts.

References

[1] Hayden Adams, Noah Zinsmeister, Dan Robinson. Uniswap v2 Core. March 2020.
https://uniswap.org/whitepaper.pdf

[2] Hedera Team. Hedera Hashgraph Announces Mainnet Launch of EVM-Compatible Smart
Contracts 2.0. February 2022. https://hedera.com/blog/hedera-hashgraph-
announces-mainnet-launch-of-evm-compatible-smart-contracts-2-0

[3] Hedera Documentation. https://docs.hedera.com/guides/

[4] Gehrig Kunz. Smart contract rent is coming to Hedera. April 2022. https://hedera.com
/blog/smart-contract-rent-is-coming-to-hedera

[5] Danno Ferrin. HIP-206: Hedera Token Service Precompiled Contract for Hedera Smart
Contract Service. November 2021. https://hips.hedera.com/hip/hip-206

[6] Danno Ferrin. HIP-218: Smart Contract interactions with Hedera Token Accounts.
December 2021. https://hips.hedera.com/hip/hip-218

4 Disclaimer

 This technical whitepaper is for general information purposes only. It does not constitute
investment advice or a recommendation or solicitation to buy or sell any investment and
should not be used in the evaluation of the merits of making any investment decision. It should
not be relied upon for accounting, legal, tax advice, or investment recommendations.

Solidity Lead Tokenomics Lead

SaucerSwap v1 Core

Matthew DeLorenzo Joseph Bergvinson

July 2022

Abstract
 This technical whitepaper places SaucerSwap in the context of Uniswap v2 core
contracts. Hedera smart contracts were upgraded to allow Hedera native tokens to be traded
using an automated market maker protocol. Several modifications to Uniswap v2 are
covered, including a novel structure of rent payment, use of the factory contract as the burn
address, and ERC20 inheritance for HTS precompiles. Wrapped hbar – an analogue to weth
– is introduced. These modifications demonstrate the re-architecture of Ethereum smart
contracts such that they take full advantage of the high performance and predictable fee
structures of the Hedera network.

1 Introduction

 SaucerSwap is a fork of Uniswap V2, an on-chain system of smart contracts on the Ethere-
um blockchain – that leverages the Hedera Smart Contract Service (HSCS) to include Solidity
smart contract integration with the Hedera Token Service (HTS). These smart contracts
implement an automated market maker (AMM) protocol based on the constant product
formula,

xy = k

 For more information on the Uniswap v2 algorithm, please refer to the Uniswap v2 core
whitepaper. [1]

 On the Ethereum network, the dominant ERC20 and ERC721 standards are used for token
operations like mint, burn, and transfer. In these standards, tokens are contracts and token
operations change contract states. The Hedera ecosystem di�erentiates itself from Ethereum
in that token operations are performed on HTS. HSCS was recently upgraded to allow smart
contracts to use HTS through Ethereum Virtual Machine (EVM) precompiles. [2] After these
upgrades, it became possible to create a decentralized exchange (DEX) using tokens on HTS.

While it was possible to create a DEX using the ERC20 standard, the Hedera ecosystem at the
time of writing is more amenable to tokens created by and controlled through HTS, and
represents the novelty of SaucerSwap.
 An important feature of Hedera is the network’s consistent and predictable fee structures
for token operations. For example, a token transfer is pegged to approximately $0.0001,
payable in Hedera’s native token, hbar, on HTS.
 For more information on the Hedera ecosystem, including HSCS and HTS, please visit their
docs. [3]

2 Modifications to UniswapV2

2.1 Establish rent payer for all contracts

 At the time of writing, Hedera plans to charge rent to smart contracts as a function of the
number of key/value pairs in a contract. Various models have been presented, such as
pay-per-use, donation-based, and dynamic fees. [4] SaucerSwap is designed to charge fees in
hbar for expanding contract state. Fees are ultimately transferred from the contract to a desig-
nated rent paying account (rentPayer).
 The fees on SaucerSwap are denominated in U.S. dollars, but are payable in hbar. Saucer-
Swap smart contracts fetch the U.S. dollar to hbar conversion factor using an exchange rate
precompiled contract (at address 0x168). This exchange rate is relevant to fee calculations on
the Hedera network, or in other words, how many hbar are needed to achieve a successful
token operation without reversion. The precompile should not be used as a reliable financial
instrument for determining the hbar/USD exchange rate because it is only designed to calcu-
late fees charged by Hedera.
 SaucerSwap’s UniswapV2Factory contract uses the exchange rate precompile, as this
requires a fixed fee (which can be adjusted by feeToSetter) to create a new liquidity pool and
pair contract. At launch, $1.00 in hbar is sent to the pair contract from msg.value to create the
contract’s LP token. The pair contract’s address is used as the treasury key of the LP token,
meaning that tokens are minted to the pair contract. It is also used as the supply key of the LP
token, which gives the contract sole minting and burning rights over its LP token. This is
immutable and achieves decentralization of the liquidity pool.
 The fixed fee (minus the hbar required to create the LP token) is sent to the rentPayer
account, from which Hedera may draw the funds to pay smart contract rent. Every pair
contract inherits the rent paying account of the factory contract, which is set to rentPayer.
This structure of rent payment ensures the pair contracts will not be delinquent.
 The function declaration of createPair is,

function createPair(address tokenA, address tokenB)

 external payable costsTinycents(pairCreateFee) override returns (ad-

dress pair) {

createPair was made payable to collect the payment required for LP token creation and the

2

3Hedera Documentation. https://docs.hedera.com/guides/
4Gehrig Kunz. Smart contract rent is coming to Hedera. April 2022. https://hedera.com/blog/smart-contract-rent-is-
coming-to-hedera

future rent for the new pair contract. The modifier costsTinycents(pairCreateFee) enforc-
es that msg.value is greater than pairCreateFee (in tinycents, where 1 cent = 108 tinycents).

2.2 Burn address for MINIMUM_LIQUIDITY

 On the Hedera network, one cannot send HTS tokens to a burn address to which no one
owns the private keys. Accounts must associate with the tokens they wish to receive. Associa-
tion serves as a protection to limit out of control state expansion using spam tokens, which
poses a threat due to low fees on Hedera.
 Because no burn address exists, SaucerSwap uses the factory contract as the burn address
to hold MINIMUM_LIQUIDITY. Upon creation of the pair contract and its LP token, the factory
associates itself with the newly created LP token and holds MINIMUM_LIQUIDITY.

2.3 ERC20 inheritance for HTS precompiles

 The SaucerSwap pair contracts inherit an abstract contract which calls HTS precompiles to
mint, burn, transfer, and associate HTS tokens, as described in HIP-206. [5] Each precompile
call requires a successful response from HTS, and reverts otherwise.
The pair contract gets its balances of token0 and token1 using the IERC20 implementation
described in HIP-218. [6] The function balanceOf is used because it is important for the pair
contract to know its own balances of token0 and token1 to correctly calculate its own
reserves. The pair contract also uses the HIP-218 implementation of the function totalSupply
in the pair contract’s mint and burn external functions.

3 Wrapped hbar
 Uniswap v2 makes extensive use of wrapped ether (weth) to convert the native token ether
to one that conforms to the ERC20 standard. Likewise, SaucerSwap uses wrapped hbar
(whbar) to convert hbar to one conforming to HTS token standards. The whbar token is creat-
ed using a token create precompile in the constructor of the wrapped hbar contract. Much like
the LP tokens of pair contracts, the wrapped hbar contract controls the minting and burning
of whbar tokens.
 The only functions present in the wrapped hbar contract are deposit and withdraw. Users
may transfer and associate whbar tokens outside of HSCS, or by calling HIP-206 precompiles
in smart contracts.

References

[1] Hayden Adams, Noah Zinsmeister, Dan Robinson. Uniswap v2 Core. March 2020.
https://uniswap.org/whitepaper.pdf

[2] Hedera Team. Hedera Hashgraph Announces Mainnet Launch of EVM-Compatible Smart
Contracts 2.0. February 2022. https://hedera.com/blog/hedera-hashgraph-
announces-mainnet-launch-of-evm-compatible-smart-contracts-2-0

[3] Hedera Documentation. https://docs.hedera.com/guides/

[4] Gehrig Kunz. Smart contract rent is coming to Hedera. April 2022. https://hedera.com
/blog/smart-contract-rent-is-coming-to-hedera

[5] Danno Ferrin. HIP-206: Hedera Token Service Precompiled Contract for Hedera Smart
Contract Service. November 2021. https://hips.hedera.com/hip/hip-206

[6] Danno Ferrin. HIP-218: Smart Contract interactions with Hedera Token Accounts.
December 2021. https://hips.hedera.com/hip/hip-218

4 Disclaimer

 This technical whitepaper is for general information purposes only. It does not constitute
investment advice or a recommendation or solicitation to buy or sell any investment and
should not be used in the evaluation of the merits of making any investment decision. It should
not be relied upon for accounting, legal, tax advice, or investment recommendations.

SaucerSwap v1 Core

Matthew DeLorenzo Joseph Bergvinson

July 2022

Abstract
 This technical whitepaper places SaucerSwap in the context of Uniswap v2 core
contracts. Hedera smart contracts were upgraded to allow Hedera native tokens to be traded
using an automated market maker protocol. Several modifications to Uniswap v2 are
covered, including a novel structure of rent payment, use of the factory contract as the burn
address, and ERC20 inheritance for HTS precompiles. Wrapped hbar – an analogue to weth
– is introduced. These modifications demonstrate the re-architecture of Ethereum smart
contracts such that they take full advantage of the high performance and predictable fee
structures of the Hedera network.

1 Introduction

 SaucerSwap is a fork of Uniswap V2, an on-chain system of smart contracts on the Ethere-
um blockchain – that leverages the Hedera Smart Contract Service (HSCS) to include Solidity
smart contract integration with the Hedera Token Service (HTS). These smart contracts
implement an automated market maker (AMM) protocol based on the constant product
formula,

xy = k

 For more information on the Uniswap v2 algorithm, please refer to the Uniswap v2 core
whitepaper. [1]

 On the Ethereum network, the dominant ERC20 and ERC721 standards are used for token
operations like mint, burn, and transfer. In these standards, tokens are contracts and token
operations change contract states. The Hedera ecosystem di�erentiates itself from Ethereum
in that token operations are performed on HTS. HSCS was recently upgraded to allow smart
contracts to use HTS through Ethereum Virtual Machine (EVM) precompiles. [2] After these
upgrades, it became possible to create a decentralized exchange (DEX) using tokens on HTS.

While it was possible to create a DEX using the ERC20 standard, the Hedera ecosystem at the
time of writing is more amenable to tokens created by and controlled through HTS, and
represents the novelty of SaucerSwap.
 An important feature of Hedera is the network’s consistent and predictable fee structures
for token operations. For example, a token transfer is pegged to approximately $0.0001,
payable in Hedera’s native token, hbar, on HTS.
 For more information on the Hedera ecosystem, including HSCS and HTS, please visit their
docs. [3]

2 Modifications to UniswapV2

2.1 Establish rent payer for all contracts

 At the time of writing, Hedera plans to charge rent to smart contracts as a function of the
number of key/value pairs in a contract. Various models have been presented, such as
pay-per-use, donation-based, and dynamic fees. [4] SaucerSwap is designed to charge fees in
hbar for expanding contract state. Fees are ultimately transferred from the contract to a desig-
nated rent paying account (rentPayer).
 The fees on SaucerSwap are denominated in U.S. dollars, but are payable in hbar. Saucer-
Swap smart contracts fetch the U.S. dollar to hbar conversion factor using an exchange rate
precompiled contract (at address 0x168). This exchange rate is relevant to fee calculations on
the Hedera network, or in other words, how many hbar are needed to achieve a successful
token operation without reversion. The precompile should not be used as a reliable financial
instrument for determining the hbar/USD exchange rate because it is only designed to calcu-
late fees charged by Hedera.
 SaucerSwap’s UniswapV2Factory contract uses the exchange rate precompile, as this
requires a fixed fee (which can be adjusted by feeToSetter) to create a new liquidity pool and
pair contract. At launch, $1.00 in hbar is sent to the pair contract from msg.value to create the
contract’s LP token. The pair contract’s address is used as the treasury key of the LP token,
meaning that tokens are minted to the pair contract. It is also used as the supply key of the LP
token, which gives the contract sole minting and burning rights over its LP token. This is
immutable and achieves decentralization of the liquidity pool.
 The fixed fee (minus the hbar required to create the LP token) is sent to the rentPayer
account, from which Hedera may draw the funds to pay smart contract rent. Every pair
contract inherits the rent paying account of the factory contract, which is set to rentPayer.
This structure of rent payment ensures the pair contracts will not be delinquent.
 The function declaration of createPair is,

function createPair(address tokenA, address tokenB)

 external payable costsTinycents(pairCreateFee) override returns (ad-

dress pair) {

createPair was made payable to collect the payment required for LP token creation and the

3

[5] Danno Ferrin. HIP-206: Hedera Token Service Precompiled Contract for Hedera Smart Contract Service. November 2021.
https://hips.hedera.com/hip/hip-206

[6] Danno Ferrin. HIP-218: Smart Contract interactions with Hedera Token Accounts. December 2021. https://hips.hedera.com
/hip/hip-218

future rent for the new pair contract. The modifier costsTinycents(pairCreateFee) enforc-
es that msg.value is greater than pairCreateFee (in tinycents, where 1 cent = 108 tinycents).

2.2 Burn address for MINIMUM_LIQUIDITY

 On the Hedera network, one cannot send HTS tokens to a burn address to which no one
owns the private keys. Accounts must associate with the tokens they wish to receive. Associa-
tion serves as a protection to limit out of control state expansion using spam tokens, which
poses a threat due to low fees on Hedera.
 Because no burn address exists, SaucerSwap uses the factory contract as the burn address
to hold MINIMUM_LIQUIDITY. Upon creation of the pair contract and its LP token, the factory
associates itself with the newly created LP token and holds MINIMUM_LIQUIDITY.

2.3 ERC20 inheritance for HTS precompiles

 The SaucerSwap pair contracts inherit an abstract contract which calls HTS precompiles to
mint, burn, transfer, and associate HTS tokens, as described in HIP-206. [5] Each precompile
call requires a successful response from HTS, and reverts otherwise.
The pair contract gets its balances of token0 and token1 using the IERC20 implementation
described in HIP-218. [6] The function balanceOf is used because it is important for the pair
contract to know its own balances of token0 and token1 to correctly calculate its own
reserves. The pair contract also uses the HIP-218 implementation of the function totalSupply
in the pair contract’s mint and burn external functions.

3 Wrapped hbar
 Uniswap v2 makes extensive use of wrapped ether (weth) to convert the native token ether
to one that conforms to the ERC20 standard. Likewise, SaucerSwap uses wrapped hbar
(whbar) to convert hbar to one conforming to HTS token standards. The whbar token is creat-
ed using a token create precompile in the constructor of the wrapped hbar contract. Much like
the LP tokens of pair contracts, the wrapped hbar contract controls the minting and burning
of whbar tokens.
 The only functions present in the wrapped hbar contract are deposit and withdraw. Users
may transfer and associate whbar tokens outside of HSCS, or by calling HIP-206 precompiles
in smart contracts.

References

[1] Hayden Adams, Noah Zinsmeister, Dan Robinson. Uniswap v2 Core. March 2020.
https://uniswap.org/whitepaper.pdf

[2] Hedera Team. Hedera Hashgraph Announces Mainnet Launch of EVM-Compatible Smart
Contracts 2.0. February 2022. https://hedera.com/blog/hedera-hashgraph-
announces-mainnet-launch-of-evm-compatible-smart-contracts-2-0

[3] Hedera Documentation. https://docs.hedera.com/guides/

[4] Gehrig Kunz. Smart contract rent is coming to Hedera. April 2022. https://hedera.com
/blog/smart-contract-rent-is-coming-to-hedera

[5] Danno Ferrin. HIP-206: Hedera Token Service Precompiled Contract for Hedera Smart
Contract Service. November 2021. https://hips.hedera.com/hip/hip-206

[6] Danno Ferrin. HIP-218: Smart Contract interactions with Hedera Token Accounts.
December 2021. https://hips.hedera.com/hip/hip-218

4 Disclaimer

 This technical whitepaper is for general information purposes only. It does not constitute
investment advice or a recommendation or solicitation to buy or sell any investment and
should not be used in the evaluation of the merits of making any investment decision. It should
not be relied upon for accounting, legal, tax advice, or investment recommendations.

SaucerSwap v1 Core

Matthew DeLorenzo Joseph Bergvinson

July 2022

Abstract
 This technical whitepaper places SaucerSwap in the context of Uniswap v2 core
contracts. Hedera smart contracts were upgraded to allow Hedera native tokens to be traded
using an automated market maker protocol. Several modifications to Uniswap v2 are
covered, including a novel structure of rent payment, use of the factory contract as the burn
address, and ERC20 inheritance for HTS precompiles. Wrapped hbar – an analogue to weth
– is introduced. These modifications demonstrate the re-architecture of Ethereum smart
contracts such that they take full advantage of the high performance and predictable fee
structures of the Hedera network.

1 Introduction

 SaucerSwap is a fork of Uniswap V2, an on-chain system of smart contracts on the Ethere-
um blockchain – that leverages the Hedera Smart Contract Service (HSCS) to include Solidity
smart contract integration with the Hedera Token Service (HTS). These smart contracts
implement an automated market maker (AMM) protocol based on the constant product
formula,

xy = k

 For more information on the Uniswap v2 algorithm, please refer to the Uniswap v2 core
whitepaper. [1]

 On the Ethereum network, the dominant ERC20 and ERC721 standards are used for token
operations like mint, burn, and transfer. In these standards, tokens are contracts and token
operations change contract states. The Hedera ecosystem di�erentiates itself from Ethereum
in that token operations are performed on HTS. HSCS was recently upgraded to allow smart
contracts to use HTS through Ethereum Virtual Machine (EVM) precompiles. [2] After these
upgrades, it became possible to create a decentralized exchange (DEX) using tokens on HTS.

While it was possible to create a DEX using the ERC20 standard, the Hedera ecosystem at the
time of writing is more amenable to tokens created by and controlled through HTS, and
represents the novelty of SaucerSwap.
 An important feature of Hedera is the network’s consistent and predictable fee structures
for token operations. For example, a token transfer is pegged to approximately $0.0001,
payable in Hedera’s native token, hbar, on HTS.
 For more information on the Hedera ecosystem, including HSCS and HTS, please visit their
docs. [3]

2 Modifications to UniswapV2

2.1 Establish rent payer for all contracts

 At the time of writing, Hedera plans to charge rent to smart contracts as a function of the
number of key/value pairs in a contract. Various models have been presented, such as
pay-per-use, donation-based, and dynamic fees. [4] SaucerSwap is designed to charge fees in
hbar for expanding contract state. Fees are ultimately transferred from the contract to a desig-
nated rent paying account (rentPayer).
 The fees on SaucerSwap are denominated in U.S. dollars, but are payable in hbar. Saucer-
Swap smart contracts fetch the U.S. dollar to hbar conversion factor using an exchange rate
precompiled contract (at address 0x168). This exchange rate is relevant to fee calculations on
the Hedera network, or in other words, how many hbar are needed to achieve a successful
token operation without reversion. The precompile should not be used as a reliable financial
instrument for determining the hbar/USD exchange rate because it is only designed to calcu-
late fees charged by Hedera.
 SaucerSwap’s UniswapV2Factory contract uses the exchange rate precompile, as this
requires a fixed fee (which can be adjusted by feeToSetter) to create a new liquidity pool and
pair contract. At launch, $1.00 in hbar is sent to the pair contract from msg.value to create the
contract’s LP token. The pair contract’s address is used as the treasury key of the LP token,
meaning that tokens are minted to the pair contract. It is also used as the supply key of the LP
token, which gives the contract sole minting and burning rights over its LP token. This is
immutable and achieves decentralization of the liquidity pool.
 The fixed fee (minus the hbar required to create the LP token) is sent to the rentPayer
account, from which Hedera may draw the funds to pay smart contract rent. Every pair
contract inherits the rent paying account of the factory contract, which is set to rentPayer.
This structure of rent payment ensures the pair contracts will not be delinquent.
 The function declaration of createPair is,

function createPair(address tokenA, address tokenB)

 external payable costsTinycents(pairCreateFee) override returns (ad-

dress pair) {

createPair was made payable to collect the payment required for LP token creation and the

future rent for the new pair contract. The modifier costsTinycents(pairCreateFee) enforc-
es that msg.value is greater than pairCreateFee (in tinycents, where 1 cent = 108 tinycents).

2.2 Burn address for MINIMUM_LIQUIDITY

 On the Hedera network, one cannot send HTS tokens to a burn address to which no one
owns the private keys. Accounts must associate with the tokens they wish to receive. Associa-
tion serves as a protection to limit out of control state expansion using spam tokens, which
poses a threat due to low fees on Hedera.
 Because no burn address exists, SaucerSwap uses the factory contract as the burn address
to hold MINIMUM_LIQUIDITY. Upon creation of the pair contract and its LP token, the factory
associates itself with the newly created LP token and holds MINIMUM_LIQUIDITY.

2.3 ERC20 inheritance for HTS precompiles

 The SaucerSwap pair contracts inherit an abstract contract which calls HTS precompiles to
mint, burn, transfer, and associate HTS tokens, as described in HIP-206. [5] Each precompile
call requires a successful response from HTS, and reverts otherwise.
The pair contract gets its balances of token0 and token1 using the IERC20 implementation
described in HIP-218. [6] The function balanceOf is used because it is important for the pair
contract to know its own balances of token0 and token1 to correctly calculate its own
reserves. The pair contract also uses the HIP-218 implementation of the function totalSupply
in the pair contract’s mint and burn external functions.

3 Wrapped hbar
 Uniswap v2 makes extensive use of wrapped ether (weth) to convert the native token ether
to one that conforms to the ERC20 standard. Likewise, SaucerSwap uses wrapped hbar
(whbar) to convert hbar to one conforming to HTS token standards. The whbar token is creat-
ed using a token create precompile in the constructor of the wrapped hbar contract. Much like
the LP tokens of pair contracts, the wrapped hbar contract controls the minting and burning
of whbar tokens.
 The only functions present in the wrapped hbar contract are deposit and withdraw. Users
may transfer and associate whbar tokens outside of HSCS, or by calling HIP-206 precompiles
in smart contracts.

References

[1] Hayden Adams, Noah Zinsmeister, Dan Robinson. Uniswap v2 Core. March 2020.
https://uniswap.org/whitepaper.pdf

[2] Hedera Team. Hedera Hashgraph Announces Mainnet Launch of EVM-Compatible Smart
Contracts 2.0. February 2022. https://hedera.com/blog/hedera-hashgraph-
announces-mainnet-launch-of-evm-compatible-smart-contracts-2-0

[3] Hedera Documentation. https://docs.hedera.com/guides/

[4] Gehrig Kunz. Smart contract rent is coming to Hedera. April 2022. https://hedera.com
/blog/smart-contract-rent-is-coming-to-hedera

[5] Danno Ferrin. HIP-206: Hedera Token Service Precompiled Contract for Hedera Smart
Contract Service. November 2021. https://hips.hedera.com/hip/hip-206

[6] Danno Ferrin. HIP-218: Smart Contract interactions with Hedera Token Accounts.
December 2021. https://hips.hedera.com/hip/hip-218

4 Disclaimer

 This technical whitepaper is for general information purposes only. It does not constitute
investment advice or a recommendation or solicitation to buy or sell any investment and
should not be used in the evaluation of the merits of making any investment decision. It should
not be relied upon for accounting, legal, tax advice, or investment recommendations.

4

